
Defense in Depth 1
ID: 347-BSI | Version: 8 | Date: 11/12/09 3:26:57 PM

Defense in Depth
Sean Barnum, Cigital, Inc. [vita3]

Michael Gegick, Cigital, Inc. [vita4]

Copyright © 2005 Cigital, Inc.

2005-09-13 L4 / D/P, L5

Layering security defenses in an application can reduce the chance of a successful attack. Incorporating
redundant security mechanisms requires an attacker to circumvent each mechanism to gain access to a
digital asset. For example, a software system with authentication checks may prevent an attacker that has
subverted a firewall. Defending an application with multiple layers can prevent a single point of failure that
compromises the security of the application.

Detailed Description Excerpts
According to Viega and McGraw [Viega 02] in Chapter 5, "Guiding Principles for Software Security," in

"Principle 2: Practice Defense in Depth" from pages 96-97:9

The idea behind defense in depth is to manage risk with diverse defensive strategies, so that if one
layer of defense turns out to be inadequate, another layer of defense will hopefully prevent a full
breach. This principle is well known, even beyond the security community; for example, it is a famous
principle for programming language design: Defense in Depth: Have a series of defenses so that if an

error isn't caught by one, it will probably be caught by another.10

Let's go back to our example of bank security. Why is the typical bank more secure than the typical
convenience store? Because there are many redundant security measures protecting the bank, and the
more measures there are, the more secure the place is.

Security cameras alone are a deterrent for some. But if people don't care about the cameras, then a
security guard is there to physically defend the bank with a gun. Two security guards provide even
more protection. But if both security guards get shot by masked bandits, then at least there's still a wall
of bulletproof glass and electronically locked doors to protect the tellers from the robbers. Of course
if the robbers happen to kick in the doors, or guess the code for the door, at least they can only get at
the teller registers, since we have a vault protecting the really valuable stuff. Hopefully, the vault is
protected by several locks, and cannot be opened without two individuals who are rarely at the bank at
the same time. And as for the teller registers, they can be protected by having dye-emitting bills stored
at the bottom, for distribution during a robbery.

Of course, having all these security measures does not ensure that our bank will never be successfully
robbed. Bank robberies do happen, even at banks with this much security. Nonetheless, it's pretty
obvious that the sum total of all these defenses results in a far more effective security system than any
one defense alone would.

The defense in depth principle may seem somewhat contradictory to the "secure the weakest link"
principle, since we are essentially saying that defenses taken as a whole can be stronger than the
weakest link. However, there is no contradiction; the principle "secure the weakest link" applies when
components have security functionality that does not overlap. But when it comes to redundant security
measures, it is indeed possible that the sum protection offered is far greater than the protection offered
by any single component.

3. http://buildsecurityin.us-cert.gov/bsi/about_us/authors/35-BSI.html (Barnum, Sean)
4. http://buildsecurityin.us-cert.gov/bsi/about_us/authors/345-BSI.html (Gegick, Michael)
9. All rights reserved. It is reprinted with permission from Addison-Wesley Professional.
10. MacLennan, Bruce. Principles of Programming Languages. Holt,Rinehart and Winston, 1987.

http://buildsecurityin.us-cert.gov/bsi/about_us/authors/35-BSI.html
http://buildsecurityin.us-cert.gov/bsi/about_us/authors/345-BSI.html
http://buildsecurityin.us-cert.gov/bsi/1084-BSI.html

Defense in Depth 2
ID: 347-BSI | Version: 8 | Date: 11/12/09 3:26:57 PM

A good real-world example where defense-in-depth can be useful, but is rarely applied, is in the
protection of data that travel between various server components in enterprise systems. Most
companies will throw up a corporate-wide firewall to keep intruders out. Then they'll assume that the
firewall is good enough, and let their application server talk to their database in the clear. Assuming
that the data in question are important, what happens if an attacker manages to penetrate the firewall?
If the data are also encrypted, then the attacker won't be able to get at them without breaking the
encryption, or (more likely) breaking onto one of the servers that stores the data in an unencrypted
form. If we throw up another firewall, just around the application this time, then we can protect
ourselves from people who can get inside the corporate firewall. Now they'd have to find a flaw in
some service that our application's sub-network explicitly exposes, something we're in a good position
to control.

Defense in depth is especially powerful when each layer works in concert with the others.

According to Howard and LeBlanc [Howard 0211] in Chapter 3, "Security Principles to Live By," in "Use
Defense in Depth," from pages 59-60:

Defense in depth is a straightforward principle: imagine your application is the last component
standing and every defensive mechanism protecting you has been destroyed. Now you must protect
yourself. For example, if you expect a firewall to protect you, build the system as though the firewall
has been compromised.

Unfortunately, a great deal of software is designed and written in a way that leads to total compromise
when a firewall is breached. This is not good enough today. Just because some defensive mechanism
has been compromised doesn't give you the right to concede defeat. This is the essence of defense in
depth: at some stage you have to defend yourself. Don't rely on other systems to protect you. Put up a
fight because software fails, hardware fails, and people fail. People build software, people are flawed,
and therefore software is flawed. You must assume that errors will occur that will lead to security
vulnerabilities. That means the single layer of defense in front of you will probably be compromised,
so what are your plans if it is defeated? Defense in depth helps reduce the likelihood of a single point
of failure in the system.

Important: Always be prepared to defend your application from attack because the security features
defending it might be annihilated. Never give up.

Example

Let's quickly revisit the castle example from the first chapter. This time, your users are the noble
family of a castle in the 1500s, and you are the captain of the army. The bad guys are coming,
and you run to the lord of the castle to inform him of the encroaching army and of your faith in
your archers, the castle walls, and the castle's moat. The lord is pleased. Two hours later you ask
for an audience with the lord and inform him that the marauders have broken the defenses and
are inside the outer wall. He asks how you plan to further defend the castle. You answer that
you plan to surrender because the bad guys are inside the castle walls. A response like yours
doesn't get you far in the armed forces. You don't give up--you keep fighting until all is lost or
you're told to stop fighting.

Here's another example, one that's a little more modern. Take a look at a bank. When was the
last time you entered a bank to see a bank teller sitting on the floor in a huge room next to
a massive pile of money. Never! To get to the big money in a bank requires that you get to
the bank vault, which requires that you go through multiple layers of defense. Here are some
examples of the defensive layers:

• There is often a guard at the bank's entrance.

• Some banks have time-release doors. As you enter the bank, you walk into a bulletproof
glass capsule. The door you entered closes, and after a few seconds the glass door to the

11. #dsy347-BSI_refs

#dsy347-BSI_refs

Defense in Depth 3
ID: 347-BSI | Version: 8 | Date: 11/12/09 3:26:57 PM

bank opens. This means you cannot rush in and rush out. In fact, a teller can lock the doors
remotely, trapping a thief as he attempts to exit.

• There are guards inside the bank.

• Numerous closed-circuit cameras monitor the movements of every one in every corner of
the bank.

• Tellers do not have access to the vault. (This is an example of least privilege, which is
covered next.)

• The vault itself has multiple layers of defense, such as:

• It opens only at certain controlled times.

• It's made of very thick metal.

• Multiple compartments in the vault require other access means.

According to NIST [NIST 01] in Section 3.3, "IT Security Principles," from page 9:

Implement layered security (ensure no single point of vulnerability). Security designs should
consider a layered approach to address or protect against a specific threat or to reduce a vulnerability.
For example, the use of a packet-filtering router in conjunction with an application gateway and
an intrusion detection system combine to increase the work-factor an attacker must expend to
successfully attack the system. Adding good password controls and adequate user training improves
the system's security posture even more.

The need for layered protections is especially important when commercial-off-the-shelf (COTS)
products are used. Practical experience has shown that the current state-of-the-art for security quality
in COTS products does not provide a high degree of protection against sophisticated attacks. It is
possible to help mitigate this situation by placing several controls in series, requiring additional work
by attackers to accomplish their goals.

According to Schneier [Schneier 00] in "Security Processes":

Provide Defense in Depth.

Don't rely on single solutions. Use multiple complementary security products, so that a failure in one
does not mean total insecurity. This might mean a firewall, an intrusion detection system and strong
authentication on important servers.

References

[Howard 02] Howard, Michael & LeBlanc, David. Writing Secure Code, 2nd ed. Redmond,
WA: Microsoft Press, 2002.

[NIST 01] Engineering Principles for Information Technology Security. Special Publication
800-27. US Department of Commerce, National Institute of Standards and
Technology, 2001.

[Schneier 00] Schneier, Bruce. "The Process of Security13." Information Security Magazine,
April, 2000.

[Viega 02] Viega, John & McGraw, Gary. Building Secure Software: How to Avoid Security
Problems the Right Way. Boston, MA: Addison-Wesley, 2002.

Cigital, Inc. Copyright
Copyright © Cigital, Inc. 2005-2007. Cigital retains copyrights to this material.

Permission to reproduce this document and to prepare derivative works from this document for internal use
is granted, provided the copyright and “No Warranty” statements are included with all reproductions and
derivative works.

http://infosecuritymag.techtarget.com/archives2000.shtml#apr2000

Defense in Depth 4
ID: 347-BSI | Version: 8 | Date: 11/12/09 3:26:57 PM

For information regarding external or commercial use of copyrighted materials owned by Cigital, including

information about “Fair Use,” contact Cigital at copyright@cigital.com1.

The Build Security In (BSI) portal is sponsored by the U.S. Department of Homeland Security (DHS),
National Cyber Security Division. The Software Engineering Institute (SEI) develops and operates BSI. DHS
funding supports the publishing of all site content.

1. mailto:copyright@cigital.com

mailto:copyright@cigital.com

